
token word:
a Xanalogical Transclusion and Micropayment System

Jason Rohrer
University of California, Santa Cruz

Dept. of Computer Science
Santa Cruz, CA 95064

rohrer@cse.ucsc.edu

ABSTRACT
We describe token word, a web-based xanalogical hypertext
system. Our system supports almost every core feature as-
sociated with Xanadu, an architecture that has been ac-
tively discussed for nearly forty years. Features include deep
quotation, unbreakable references, two-way reference chas-
ing, and frictionless micropayments that are backed by real-
world currency. To our knowledge, token word is the first
xanalogical system implementation to included all of these
features. Furthermore, token word is the first xanalogical
system of any kind to be accessible using a web browser with
no additional software. Previous attempts at full xanalog-
ical implementations took many years and were ultimately
never completed. Given this historical backdrop, an addi-
tional contribution of this paper is in analyzing the devel-
opment strategies that led to a relatively novel success. A
live token word system is running at:

http://hypertext.sf.net/token word

Categories and Subject Descriptors
H.5.4 [Information Interfaces and Applications]: Hy-
pertext/Hypermedia—Architectures; K.4 [Computers and
Society]: Electronic Commerce—Payment Schemes

General Terms
Design, Human Factors

Keywords
Micropayments, quotation, transclusion, Xanadu

1. INTRODUCTION
Xanadu has been floating in the collective mind of the hy-
pertext research community for nearly forty years. Xanadu
is a dream and an ideal. We know that it would be great
(or at least interesting) if a xanalogical system existed, but

we are also resigned to the notion that such a system will
probably never exist. Is Xanadu impossible?

That question by itself, the impossibility question, is ex-
traordinarily intriguing. We know that Xanadu is not im-
possible. The design, on paper [15], is clear enough: we just
need to build it. The problem might be that no one tried to
build it. But many people did try to build Xanadu over the
years. The problem might be that the people trying to build
it did not have sufficient resources. But people with extraor-
dinary resources did try to build it. Will anyone argue that
Autodesk did not have extraordinary software development
resources in the late 1980s? Furthermore, Autodesk believed
in Xanadu. The following quote from a 1988 Autodesk press
release is most telling:

In 1964, Xanadu was a dream in a single mind.
In 1980, it was the shared goal of a small group
of brilliant technologists. By 1989, it will be a
product. And by 1995 it will begin to change
the world. Much work remains to be done to
realize the potential of Xanadu—it will take the
Xanadu development team 18 months to field the
first Xanadu system. [19]

In the same press release, Autodesk claimed 1987 sales fig-
ures topping $79 million. Indeed, Autodesk had extraor-
dinary resources for its time. In 1992, after four years of
development and $5 million spent [8], Autodesk ceased de-
velopment of Xanadu [7]. Ironically, this decision was made
just when the world was ripe for the first global hypertext
system [9].

We are scared of Xanadu. We hear its siren song and are
tempted, but we know that many have tried and many have
failed. The most frustrating factor is that none of us re-
ally know how useful Xanadu would be, even if it did exist.
We can look at architecture diagrams and photographs of
cardboard mock-ups [16], but these do not give us a true
sense of what it would be like to use a xanalogical system.
Few of us have ever played with a xanalogical user interface
prototype, even fewer have paid or received a true micropay-
ment (xanalogical or otherwise), and almost none have tran-
scluded the work of another or had our work transcluded.
Many hypertext systems have been inspired by xanalogical
ideas. To our knowledge, however, none of these system sup-

port a true form of transclusion, let alone transclusion and
micropayments, both of which are central to the Xanadu
architecture and user experience.

What is using a xanalogical system really like? Is it as useful
as it sounds? What made implementing Xanadu so difficult
for so many people? This paper attempts to answer these
question by describing the first fully-realized xanalogical im-
plementation.

Given this historical perspective, the contributions of this
paper are threefold. First, this paper analyzes the process
that lead from a paper design to real-world xanalogical soft-
ware. Second, this paper shows that modern technology and
techniques are of utmost importance for making this imple-
mentation process possible, let alone quick. Third, this pa-
per describes a full xanalogical system implementation from
the perspective of an end-user. The novelty of this paper
hinges on the implementation, which has a modern flavor,
though the underlying ideas are quite old. We have achieved
a novel success, where past attempts have failed, and we feel
that the lessons learned from this process are valuable.

2. THE XANADU MODEL
As mentioned in the above quote, Xanadu’s underlying ideas
were first incubated by Nelson in the 1960s [14]. These ideas
evolved somewhat over the next forty years, receiving one of
their most verbose presentations in Nelson’s book Literary
Machines, which was first published in 1981 [15]. Nelson’s
more recent paper on the xanalogical model is up to date
in terms of modern technological trends, but the core ideas
have not changed [16]. The high-level description and in-
terpretation of Xanadu given here is based on information
culled from Literary Machines, Nelson’s recent lectures, and
personal conversations with Nelson.

The chief goal of Xanadu, distilled into a single phrase, is
frictionless content reuse. This goal would be easily real-
ized in a frictionless, copyright-free world: authors could
simply copy whatever they want and reuse it however they
please. In our world, however, we have copyright. Unlike
other systems [11], Xanadu does not attempt to undermine
copyright, but instead tries to work with it. All of the de-
sign choices and complications in the Xanadu model can be
seen as mechanisms for making reuse frictionless in the face
of copyright. When trying to implement unrestricted reuse
in a way that works with copyright, we are faced with the
following issue: copyright forbids unrestricted copying.

Xanadu’s central mechanism is transclusion, a form of quo-
tation. Transclusion differs from standard quotation in that
it does not involve copying of any kind. When document A
transcludes a quote from document B, the quote is stored
as a deep reference to the quoted material in B: words from
B are not copied into A. Whenever A is viewed, the words
from A are fetched from A’s owner, and the necessary words
from B are fetched from B’s owner. Thus, even though A’s
owner has quoted document B, the quoted owner still re-
tains control over the distribution and licensing of his or her
words.

Transclusion creates a serious problem, at least in combina-
tion with how we commonly interact with electronic docu-

ments: they change constantly. If B changes or is deleted,
A’s quote can break. Xanadu’s solution is to forbid doc-
ument change but encourage document versioning. Thus,
as B is updated, all previous versions are maintained, and
A’s quote can point to the particular version that A’s owner
quoted. Each version of B is immutable, so A’s quote will
never break.

The Xanadu model refines versioning further by describing
an ever-growing, add-only, content space. When a docu-
ment is created, its text is added to this space. When a
document transcludes from another document, it points not
to the document itself, but to the transcluded words in the
content space. Thus, a document in Xanadu is a list of point-
ers to regions in the content space—no text is contained in
the documents themselves. Versioning with this mechanism
is particularly space-efficient: unchanged portions of a new
document version can be transcluded from the content space
instead of being duplicated.

Along with requiring a new model for document mainte-
nance, transclusion pushes us toward a new model for licens-
ing copyrighted material. We commonly think about licens-
ing documents only in their entirety. For example, we may
assign monetary value to a printed copy of a book, but we
have difficulty imagining how much a chapter, page, or para-
graph of that book is worth. In the Xanadu model, when
users read a quote from document B embedded in document
A, they may only be accessing a small portion of B (for
example, a single sentence from a 10,000-word document).
Thus, B’s owner must be prepared to license only a portion
of B to readers. The Xanadu model handles this licensing
issue with micropayments and per-character values for con-
tent. Nelson is fond of using the term nanobuck (10−9 dol-
lars) to describe the smallest unit of payment: documents,
or portions of documents, are licensed for N nanobucks per
character. For example, if N = 100, a document containing
one million characters, if licensed in its entirety, would cost
$0.10, while the first half would cost only $0.05.

When licensing a portion of a document in the Xanadu
model, users are actually licensing a region of the content
space. Each character in the content space can be perma-
nently acquired for a one-time licensing fee. Thus, if users
purchase documents that overlap with regions they already
own, they only pay for the portions that they have yet to
acquire. Each user accumulates a “library” of acquired text
regions over time and pays for each region only once.

When a document is accessed that contains quotes from mul-
tiple authors, the micropayments are divided and routed
to the original authors on a per-character basis. Though
reading content requires payment, quoting is essentially free,
since the content is not accessed during the act of quoting.
In practice, an author will need to read a document before
quoting from it, but this reading requires only the normal
first-access payment, no matter how widely the new, quot-
ing document is expected to be read. However, the more a
document is quoted and read in quoted form, the more mi-
cropayments the original author will receive. Thus, authors
benefit from the unrestricted quotation and reuse of their
work: they have no financial motivation for imposing any
limits.

Figure 1: The document display interface.

We can summarize the Xanadu model with the following
feature list: deep quotation by reference; static underlying
content; and per-character, one-time micropayments.

3. SYSTEM ARCHITECTURE
We designed and built token word, a full-featured xanalog-
ical system, from scratch in only ten days, and our devel-
opment team consisted of a single programmer. To achieve
this kind of rapid development, we relied heavily on modern
technology and development techniques. We do not view
past Xanadu failures with disdain. Those early attempts
were simply ahead of their time: the technology of the day
was not ready for Xanadu. The central technologies that
made token word development possible were the web, CGI,
Perl, and PayPal [3].

Our system, though full-featured, was not designed to be
“the” scalable xanalogical system that will carry us all into
the future. Instead, we focused on building a usable im-
plementation of core xanalogical features for the purpose
of experimentation. Though scalability was not a design
goal, token word was built on top of technologies that have
scaled well for other web-based projects [1, 5, 6]. Given these
precedents, our architecture could potentially be scaled to
support large document collections. Section 3.2.4 discusses
these scalability issues in more detail.

3.1 User Perspective
In describing the token word user experience, we are faced
with the very issue that motivated token word development
in the first place: descriptions in words and pictures do not
give us a true sense of what it is like to use a system. Since
this paper’s focus is on a real-world implementation and
not just an abstract description, we encourage readers to
visit http://hypertext.sf.net/token word to try our sys-
tem for themselves.

From the end-user’s perspective, token word has many sal-
ient features. Users access token word with a web browser,
and they must create accounts and log in to use the system.
The central elements of the system are documents, which
can contain quotes of other documents. Quote markers can
be hidden or displayed, and quotes can be followed to see the
context from which they were taken. Each document also
features a list of documents that quote it, so references can
be followed in both directions. The token word document
display interface can be seen in Figure 1.

Figure 2: The interface for extracting a quote. The
region surrounded by <q> </q> tags is selected for
extraction.

Figure 3: The quote clipboard interface. Each quote
is associated with a <q N> reference tag, where N is
the quote’s index on the clipboard.

Quotes can be extracted from documents and saved to a
user’s quote clipboard for later reference or use. To extract
a document region as a quote, the user inserts <q> </q>
tags around the desired region in a text area. Though it
was motivated by the limitations of a web-based user inter-
face, this interaction mechanism is arguably more elegant
and less error-prone than mouse-based selection highlight-
ing, especially when extracting large regions that span sev-
eral screens full of text. Figure 2 shows the interface for
quote extraction. Each quote is assigned a <q N> tag to be
used when inserting the quote into new documents—<q 3>
refers to the quote at index three on the clipboard. The use
of these abreviated handles hides the complexity of refer-
ences and document regions from the user. After extracting
a quote, the user never needs to deal directly with the doc-
ument region again, though the original context of a quote
can be accessed from the clipboard with a single click. The
clipboard interface is shown in Figure 3. When creating a

Figure 4: The document creation interface. Quote
1 from the clipboard is inserted with the <q1> tag.

Figure 5: The document preview interface. Quotes
are expanded, and possible spelling mistakes are
highlighted.

new document, a user can enter new text along with handle
tags for quotes from his or her quote clipboard, as seen in
Figure 4. A preview mode shows the new document with all
quote references expanded, as seen in Figure 5.

Figures 2 through 5 show a sequence of actions from a com-
mon usage scenario: extracting a quote, viewing the quote
on the clipboard, creating a new document that uses the
quote, and previewing the document. After correcting the
spelling mistake highlighted in Figure 5, the final step would
be to submit the document. Once submitted, the work be-
comes a full-fledged token word document, making it read-
able and quotable by other users in the system.

Each user has a token balance, where one token is worth one
character. The current exchange rate is 1,000,000 tokens for
$1, and PayPal is integrated for token deposits and with-
drawals. When a reader views a document that contains
as of yet unviewed text regions, tokens are transfered from
the reader to the original authors of the regions. Users only
pay for each piece of text once—repeat viewings of the same
text, in any context, are free.

Figure 6: Brief portions of documents can be quoted
to emulate links. Here, the titles of two documents,
“frequently asked questions” and “token word his-
tory,” have been quoted.

Full text searches are supported across the entire document
space, and search terms are highlighted when result doc-
uments are displayed. Search results (and other lists in
token word) are sorted with most-quoted documents first,
since frequently quoted documents are likely to contain the
best information. This ranking mechanism is similar to
Google’s PageRank algorithm [10].

The token word system provides no explicit document link-
ing mechanism. However, since quote context can be ob-
tained easily, brief quotes can be used to emulate links be-
tween documents. For example, to link to a target document
called “frequently asked questions,” the title words of the
document can be quoted. When quote markers are shown
in the linking document, the words “frequently asked ques-
tions” will be marked, and clicking on the words will lead
to the context of the quote (in other words, to the target
document “frequently asked questions”). If the title words
are not appropriate for use as a link anchor, another more
relevant phrase from the body of the target document can
be quoted to form a link. For an example of quotes used as
links, see Figure 6.

3.2 Implementation Details
3.2.1 Data Model
Keeping with the Xanadu model, token word separates doc-
uments from the text they contain. There are two types
of data objects in token word: documents and chunks. A
chunk contains a raw block of contiguous text, while a doc-
ument is a list of references to text chunks. Some of the
referenced chunks in a document may have been created at
the same time as the document (for new text in the docu-
ment), while others may be part of quotes taken from other
documents.

Each reference in a document contains a pointer to a text
chunk region and an optional pointer to a document context
region. The document context pointer tracks which docu-
ment the material was quoted from and is used for quote
reference chasing. If a document refers to a new text chunk
that has not appeared in any previous documents, the docu-
ment context pointer is omitted: such chunks are not part of
quotes and have no references that can be chased. With this
two-pointer model, we can distinguish “original” material in
a document from quoted material. By following references

Document A

Document B

Document C

Chunk k

Figure 7: An example reference chain model. Dotted lines represent document region pointers, and solid
arcs represent chunk region pointers. Light gray regions represent text from chunk k. Dark gray regions in
A and B represent portions of A’s quote from B that do not come from chunk k (other chunks have been
omitted from this diagram). Arcs between C and k have been colored gray for clarity.

recursively for a nested quotation, the original author and
document context of particular words can be obtained.

For example, suppose that document A quotes a block of
text from B, and that block contains a quote of original ma-
terial, residing in chunk k, from document C. A’s reference
will contain both a pointer to the text chunk k and to the
document context B. B’s reference will point to both chunk
k and document C. At the end of this reference chain, C’s
reference will point only to k. Figure 7 shows a diagram of
our model applied to this reference chain.

Quote clipboards are modeled like documents, but with mi-
nor differences. Each quote on the clipboard points to a
contiguous document region. Since a document region can
be comprised of regions from multiple chunks, we might
want to model each quote as a list of references, just like
we model a document. However, we simplify the clipboard
by modeling each quote as a single document region pointer
with no chunk region pointers. To insert a clipboard quote
into a new document, we can resolve the chunk region ref-
erences for the quote and set the document region for each
of these references to the document from which the quote
was extracted. This simple model allows us both to track
the extraction context of the quote and to store the quote
clipboard efficiently. Figure 8 shows a diagram of a quote
clipboard modeled in this way. The alternative list model
mentioned above could not be easily used to track quote ex-
traction context, and the clipboard representation would be
much larger.

q0

Clipboard

q1

Document ADocument B

Figure 8: An example quote clipboard model. Dot-
ted lines represent document region pointers.

3.2.2 Data Representation
The system data is stored in a filesystem directory tree.
Each user has directory that holds that user’s chunk files,
document files, and quote clipboard files, along with a list
of previously purchased chunk regions. To support two-way
reference chasing, each document has a file that tracks the
documents that quote it.

References in documents are represented using the following
format:

<chunkUserID, chunkID, chunkStartOffset, length;

docUserID, docID, docStartOffset>

The portion of the reference before the “;” describes the
chunk region of the reference. The second portion, which is
optional, describes the document region context of the ref-
erence. Note that chunkUserID may differ from docUserID,
since the quoted region may itself be part of a quote in the
context document (in the case of a nested quote). Con-
sider our previous example, which is shown in Figure 7, and
suppose that documents B and C are owned by userY and
userZ, respectively. The reference included in document A
might look like this:

<userZ, k, 12, 50; userY, B, 125>

In other words, we have 50 characters from chunk k, starting
with character 13, which were quoted from document B,
starting at character 126. userZ owns both document C
and chunk k, since k was created as original material for use
in C. Note that length is not specified for the document
region context of a reference, since it would be redundant
(in our example, it would be 50).

As described in our discussion of data models, each quote on
a clipboard has only a single pointer to a document region
and no chunk region pointers. We represent these references
with the following format:

<docUserID, docID, startOffset, length>

Consider our previous example clipboard, which is shown in
Figure 8, and suppose that documents A and B are owned by
userX and userY, respectively. The clipboard representation
might look like this:

<userX, A, 37, 75>

<userY, B, 100, 50>

Since documents and text chunks are static, full text searches
can be implemented using an index that is updated in real
time as documents are created. Each word in the index is
associated with a list of documents containing that word.
When a document is added to the system, its reference is
appended to the end of the index list for each word that it
contains.

3.2.3 Development
The entire token word system is implemented as a single
CGI script written in Perl, though the script is broken up
into eight modules for organization purposes. Perl’s built-
in support for regular expressions was useful for the rather
complicated text processing done by token word. Many of
these text processing operations can be expressed in succinct
and elegant ways using Perl. For example, highlighting pos-
sible misspellings in preview mode was a minor addition that
required less than fifteen lines of code.

User interfaces can be laid out easily with HTML, and CGI
processing is well-supported by existing Perl modules. The
CGI model requires a stateless action-response programming
style, which makes it easy to focus on one feature at a time
during development. Perl-based CGI programming seems
to be the modern method of choice for rapidly developing
complex, multi-user applications. Other systems that have
used this development method successfully are discussed in
Section 5.

Even though the full development cycle was short, we used
an iterative process. Features were added to token word one
by one, and the system was maintained in a usable form at
all times. For example, we started with a system that man-
aged text chunks, then added document management, then
added quotes, and then added tokens transfers. Final itera-
tions added features such as spell checking and index-based
searching. From our understanding of previous xanalogical
implementation efforts, this iterative process may have been
key to our success. The Xanadu model is complex and sub-
tle, and it is easy to get bogged down by details without
ever producing a working system. Our system started out
simple and grew in complexity, one feature at a time.

3.2.4 Scalability Limitations
The main scalability limitation of our implementation is the
use of a filesystem as a data backend. Each text chunk and
document are stored in a separate file, and these data objects
can be quite small. A chunk file will be as large as the text
it contains, but a document file stores only references. For
example, if a new document is created that references only
one new chunk and contains no quotes, the document file
will contain a single reference. The example reference given
above was represented using only 33 bytes of ASCII text.

The first limitation is in terms of storage efficiency: most
filesystems have a minimum file size, and this minimum is
usually larger than 1 kilobyte. In our example, 33 bytes
of document data would occupy at least a kilobyte of disk
space.

The second limitation is in terms of filesystem architecture:
Unix-like filesystems use an inode table, and each file must
be associated with a unique inode. When a filesystem is
created, the number of available inodes is fixed, and this
number can be relatively small (the common ratio for mod-
ern Linux systems seems to be about 200,000 inodes per
gigabyte of disk space). [17] Thus, even if we ignore storage
efficiency concerns, our implementation is limited in terms
of the number of chunks and documents it can contain.

If our system did need to scale to support millions of users
and billions of chunks and documents, several approaches
would be possible. First, we could use an existing database
system as a backend to store chunks and documents. This
approach would deal with the inode limitations, and it might
actually improve performance, since database queries would
replace the directory lookups that are currently used to fetch
chunks and documents. A second approach would be to
implement a simple application-level virtual filesystem for
chunk and document storage. With this approach, we could
tailor the storage system to our specific needs, though its
development would certainly be labor-intensive.

All filesystem operations in token word are wrapped by a
single module with only a handful of interface functions. By
modifying the implementation of these module functions,
either of the scalable backends mentioned above could be
added to token word with no changes to the rest of the code.

We chose a directory tree backend, despite its scalability
limitations, because of its simplicity. This choice fits into
our implementation philosophy, since the focus was on pro-
ducing a working system and adding features iteratively. A
scalable backend might be seen as a feature to be added in
a future iteration. Our system, in its current form, is still
functional in terms of its goal, which is to support explo-
ration of a multi-user xanalogical system.

4. MICROPAYMENT ISSUES
With our micropayment system, we wanted to leverage Pay-
Pal’s [3] immense popularity and familiarity. By handling
real-world currency exclusively through PayPal, instead of
through our own virtual money system, we can process pay-
ments in a secure and trustworthy fashion.

However, PayPal’s currency model does not support the mi-
crodollar resolution that we need, so we cannot rely on this
service alone for transferring tokens between users. Even if
PayPal did support high-resolution payments, it does not
allow a third party to initiate transfers between account
holders in a transparent and frictionless way (and for good
reason, given the security issues).

To deal with these issues, we built an internal token balance
system and used PayPal integration only for deposits and
withdrawals of real-world currency. With this configuration,
a deposit is by no means frictionless (logging in to PayPal

is required), but after the deposit has been made, token
payments are completely transparent as the user accesses
token word documents. Similarly, withdrawing tokens in
exchange for real-world currency is not frictionless: Pay-
Pal does not support an automated payment mechanism, so
withdrawal requests must be queued for manual processing
by the token word system administrator. Whereas deposits
take effect immediately (using PayPal’s “Instant Payment
Notification” service), withdrawn token refunds are delayed
by the response of the human administrator. From the ad-
ministrator’s point of view, the withdrawal queue can be
used to increase security, since any suspicious activity can
be investigated before real-world payments are made.

In our live system, we chose an exchange rate of 1,000,000
tokens for $1, though this parameter can be changed on
a site-by-site basis. With this exchange rate, we tried to
minimize the financial burden on readers while still assigning
appreciable value to content. For example, the full text of
this paper would cost about $0.04, so 25 people would need
to read it before it earned $1 worth of tokens.

4.1 Balancing Risk
Given that micropayments in token word are mandatory
and automatic, a major barrier to system adoption might
exist: trying token word would require the deposit of real-
world currency. Even the main page displayed after login
is a first-class token word document, so a new user with
no tokens would not even be able to read a description of
token word, let alone try any of its features.

One way of dealing with this adoption barrier would be
to give each new user a small number of “free” tokens to
start with (for example, at least enough tokens to read the
main page). This solution would allow new users to try
the system with no monetary investment, but it carries an
enormous risk for the token word system administrators. A
small group of users could create many fake accounts and
then use each account to read a large dummy document
owned by one user. This kind of scam could be used to con-
solidate the free starting tokens from many accounts into one
account, and then a withdrawal could be made in exchange
for a large amount of real-world currency. Even if users
are not trying to intentionally scam the system, doling out
free tokens poses considerable risk. One user might write
documents that are popular with new users (for example,
a collection of how-to documents) and amass a large num-
ber of free tokens over time—the withdrawal of these tokens
could financially devastate the token word administrators.

We have devised a risk-free mechanism that deals with the
adoption barrier. Our approach uses two token types. The
first type of tokens, called trial tokens, have no real-world
value. Each new account starts out with a small number
of trial tokens (in our live system, each account starts with
50,000 trial tokens). The second type of tokens, called real
tokens, can be exchanged for real-world currency. The token
transfer logic in token word keeps track of token types: trial
tokens can only be transfered between users’ trial balances,
and real tokens can only be transfered between real balances.
Trial tokens are favored, and real tokens are only spent when
a user has no trial tokens.

For example, suppose that the balances of three users are as
shown in following table:

User Trial balance Real balance
A 50 200
B 0 500
C 10 0

Suppose that user A reads a new 100-character document
that is owned by B, but that the document contains a 20-
character quote by C. User A must pay 100 tokens to access
this new content, with 80 going to B and 20 going to C. The
transfer logic favors trial tokens, so A’s trial balance is ex-
hausted first by transferring 50 tokens to B. The remaining
payment to B is made with 30 real tokens, and 20 real to-
kens are also transfered to C. The resulting balances are
shown in the following table:

User Trial balance Real balance
A 0 150
B 50 530
C 10 20

This two-type scheme allows users to try token word ex-
tensively without a monetary investment, and it also poses
no financial risks to the administrators. Note that though
trial tokens have no real-world value, they still have value
in token word, since they can always be used to purchase
new content. Inside token word, a user that amasses many
trial tokens is just as wealthy as a user that has many real
tokens. A user that actively publishes popular content in
token word could effectively use the system forever without
depositing any real-world money.

5. RELATED WORK
Much of the existing work on xanalogical systems was dis-
cussed in Sections 1 and 2, so we will focus on related non-
xanalogical systems here.

However, we should mention that interest in Xanadu has not
waned in recent years, even though development work on
Udanax, the last official (and most ambitious) Xanadu im-
plementation effort, ceased in 1995 [4]. For example, Lukka
and Fallenstein describe a system that uses ideas taken from
Freenet for xanalogical content storage and retrieval [13].
As another example, recent work with XLink has focused
on adding transclusion capabilities to the web [12], but sup-
port is limited to embedding entire documents. XPointer
can be used in conjunction with XLink to refer to document
spans [18], though nothing prevents these references from
breaking when documents change.

5.1 Wikis
In terms of implementation, token word is closely related to
a recent class of hypertext systems known as Wikis, which
are often implemented as Perl-based CGI programs. Wikis
are reader-edited web sites, and web-based HTML forms
are used as the interface for page authoring. In many cases,
Wikis are open for editing by the public at large.

Despite the fact that their sociological aspects receive most
of the attention, Wikis are also interesting from a hypertext
perspective. Links can be created to documents that do
not yet exist without knowing where those documents will
eventually reside. To create a new document, a user must
follow one of these dangling links in an existing page—this
action leads to a page creation screen. Thus, in a Wiki,
there is no way to create a page in isolation. In fact, the
name of a new page is determined by the contents of the
dangling link and cannot be specified in the page creation
screen.

The first Wiki was created by Ward Cunningham in 1995
and is still active today [5]. The most ambitious Wiki-based
project is Wikipedia, a user-edited encyclopedia, which re-
cently grew to over 100,000 entries [6].

5.2 Everything2
Like token word and Wikis, Everything2 [1] is a web-based
hypertext system implemented using CGI and Perl. Every-
thing2 supports dangling links to pages that do not exist yet,
but it handles these links differently than a Wiki does. When
a user follows a dangling link, a search is performed for the
title words of the non-existent page. Thus, dangling links
are more functional in Everything2 from a reader’s point of
view. Using this comparison point, we might conclude that
Wikis favor authors, while Everything2 favors readers.

In addition to in-line, user-created links (dangling or oth-
erwise), each node in Everything2 features a list of auto-
matically generated links. These links are culled from user
traversal paths: when a user leaves one page and enters an-
other (either by clicking a link or performing a search), a
two-way link is added between the pages.

5.3 Weblogs
Another class of related web-based hypertext systems are
weblogs, or “blogs.” These systems allow content to be
added to a web site serially, one post at a time. Some blogs
are used by individuals as a means of sharing daily thoughts
with the world, while others aim to be collaborative informa-
tion spaces and feature moderated comments posted by the
public. One of the most interesting collaborative weblogs
is Kuro5hin (pronounced “corrosion”), which features high-
quality news and culture stories submitted and moderated
by the public [2]. Many blogs are implemented using CGI
and Perl, though more recent efforts seem to favor PHP.

5.4 Commonalities and Differences
All three systems discussed above share several features in
common with token word. First, they are all web-based,
collaborative information spaces. Second, they all rely heav-
ily on existing technology for their implementations. Third,
from what we can tell, they were developed relatively quickly.

In addition, we can see iterative development philosophies in
weblogs and Wikis, not necessarily in the individual projects,
but in the phenomena themselves. The first Wikis and we-
blogs were simple but functional. Over time, new imple-
mentations were released with more features. Today, the
most popular systems in either category are extraordinarily
feature-rich.

Of course, out of all of the collaborative information spaces
discussed here, token word is the only system that supports
deep content reuse and frictionless micropayments. Thus,
these systems are closely related in terms of implementation,
but their goals and end-user experiences are very different.

6. CONCLUSION
Throughout this paper, we have discussed the strategies that
made token word development possible, including an itera-
tive process and heavy use of existing technology.

One additional strategy was crucial, though it has not been
mention explicitly: a focus on a core xanalogical feature set.
We aimed to build a system that supported deep quotation,
unbreakable references, and frictionless micropayments—we
distilled these features from the Xanadu model in Section 2.
However, Literary Machines is over 250 pages long, and it
is chocked full of features that an ideal xanalogical system
might have [15]. Perhaps previous Xanadu efforts aimed to
support this entire feature set, and perhaps that is why they
failed.

The token word architecture is by no means an ideal xana-
logical system, and many features are missing. However, it
is still the first system to implement the core features of the
Xanadu architecture. Though one would be hard-pressed to
argue that the features included in token word are not cru-
cial, three important features are missing. First, token word
does not explicitly support document versioning. However,
using the quotation primitive, a limited form of versioning
can be emulated (a user can quote unchanged regions of the
previous version when creating a new version). Second, to-
ken word does not support multi-server integration: each
installation of token word operates in isolation, and quotes
between documents at different sites are not possible. We
see multi-server integration as one of the weakpoints in the
Xanadu architecture: how can we ensure that references
never break in a system comprised of multiple, separately
owned servers? Even if fault-tolerant, multi-server integra-
tion is possible, it is not essential for the end-user experience.
Third, token word does not support side-by-side document
comparison with transpointing lines, a classic Xanadu inter-
face feature that Nelson’s recent paper describes in detail
[16]. The transpointing interface would be difficult, if not
impossible, to support in a web browser with no additional
software. However, a side-by-side document comparison in-
terface, using colored highlighting to indicate identical re-
gions, has been contemplated for token word. Implement-
ing such an interface would be easy, though coming up with
a highlighting scheme that works correctly in the general
case (for example, without running out of readable colors)
is quite difficult.

In recent personal conversations, Nelson has described a
layered presentation model that could work in conjunction
with a xanalogical storage system. For example, a presen-
tation layer could specify font sizes, links, or annotations,
and multiple layers could be stacked when rendering a par-
ticular piece of content. Given token word’s current data
model and presentation logic, adding layers would not be
difficult. In fact, particular types of layers are already im-
plemented: highlights for misspellings, quote context, and
hit search terms are applied to document text after it is as-

sembled. Highlights are achieved by inserting presentation
tags (in this case, HTML font color tags) around particular
character spans. Many other presentation styles could be
supported in this way by inserting other tag types. Layers
are an ideal feature to add in a future development iteration.

7. ACKNOWLEDGEMENTS
Thanks are due to Ted Nelson and Jim Whitehead for their
contributions to interesting xanalogical discussions over the
past year. “Xanadu” is a trademark of Ted Nelson. To pre-
vent confusion, the generic terms (e.g., xanalogical system)
have been used whenever possible.

8. REFERENCES
[1] Everything2. http://www.everything2.com.

[2] Kuro5hin. http://www.kuro5hin.org.

[3] PayPal. http://www.paypal.com.

[4] Udanax. http://www.udanax.com.

[5] Wiki Wiki Web.
http://c2.com/cgi/wiki?WikiWikiWeb.

[6] Wikipedia. http://www.wikipedia.org.

[7] Autodesk hands over control of information systems
division. In J. Walker, editor, The Autodesk File. Aug.
1992. http://www.fourmilab.to/autofile/.

[8] Xanadu light. TidBITS, 204, 1993.
http://www.tidbits.com/tb-issues/TidBITS-204.html.

[9] T. Berners-Lee, R. Cailliau, J.-F. Groff, and
B. Pollermann. World-Wide Web: The information
universe. Electronic Networking: Research,
Applications and Policy, 1(2):74–82, 1992.

[10] S. Brin and L. Page. The anatomy of a large-scale
hypertextual web search engine. Computer Networks
and ISDN Systems, 30(1–7):107–117, 1998.

[11] I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong.
Freenet: A distributed anonymous information storage
and retrieval system. In Workshop on Design Issues in
Anonymity and Unobservability, pages 46–66, 2000.

[12] D. Lowe and E. Wilde. Improving web linking using
xlink. In Open Publish, 2001.

[13] T. J. Lukka and B. Fallenstein. Freenet-like GUIDs for
implementing xanalogical hypertext. In Proceedings of
the 2002 ACM Conference on Hypertext, pages
194–195, 2002.

[14] T. H. Nelson. The hypertext. In Proceedings of the
World Documentation Federation Conference, 1965.

[15] T. H. Nelson. Literary Machines. Mindful Press,
Sausalito, CA, 1992.

[16] T. H. Nelson. Xanalogical structure, needed now more
than ever: parallel documents, deep links to content,
deep versioning, and deep re-use. ACM Computing
Surveys, 30(4es), 1999.

[17] A. Silberschatz and P. B. Galvin. Operating System
Concepts. Addison-Wesley, Reading, MA, 1998.

[18] F. Vitali, F. Folli, and C. Tasso. Two implementations
of xpointer. In Proceedings of the 2002 ACM
Conference on Hypertext, pages 145–146, 2002.

[19] J. Walker. Statement for the Autodesk/Xanadu press
conference. In J. Walker, editor, The Autodesk File.
Apr. 1988. http://www.fourmilab.to/autofile/.

